Технологии строительства и деревообработки.

Ресурсы "кладовой солнца"

В Тверском государственном техническом университете разработано несколько новых технологий с использованием торфяного сырья, которые находят применение в самых разных областях ? от сельского хозяйства до строительства

Мисников О. Ресурсы "кладовой солнца" // Наука и жизнь. 2004 . №5. C. 56-62

В век синтетических материалов стали забывать о природных ресурсах биологического происхождения. Но разумно ли отказываться от того богатства, которое дает нам в руки природа? Речь идет о торфе. В Тверском государственном техническом университете разработано несколько новых технологий с использованием торфяного сырья, которые находят применение в самых разных областях ? от сельского хозяйства до строительства.



Болота занимают значительные площади в нашей стране, а продукт их жизнедеятельности ? торф ? с давних времен использовался в хозяйстве. К сожалению, сейчас о торфе мы вспоминаем в основном тогда, когда начинаем задыхаться от дыма горящих торфяников. И сразу заговариваем о том, что надо запретить разработку торфяных болот, а осушенные месторождения ? затопить. Но пожары чаще всего возникают не на действующих торфяных предприятиях, где организована система противопожарного водоснабжения и есть специальная техника, а на заброшенных торфяных разработках. По правилам такие участки следует рекультивировать, искусственно заболачивать, но в последние 10?15 лет добыча торфа в нашей стране резко сокращалась, а производственные площади просто забрасывались.

Стоит ли заниматься осушением и разработкой крупных торфяных массивов? Однозначно ответить на этот вопрос очень трудно. Осушение больших обводненных площадей снижает уровень стояния грунтовых вод, нарушает режим водного питания соседних территорий, влияет на микроклимат. Болота активно поглощают углекислый газ (по оценкам ученых, эффективнее, чем лесные массивы). Но в то же время они выделяют метан (приблизительно от 4 до 16 г/м 2 за летний сезон), ?парниковый? эффект которого примерно в 20 раз выше, чем у углекислого газа. Осушение и разработка торфяных месторождений предотвращают поступление метана в атмосферу, а при искусственном заболачивании выработанного торфяника связывается в 3?4 раза большее количество углекислого газа, чем в естественном болотном массиве. Кстати, динамично развивающийся торфяно-болотный фитоценоз довольно агрессивен: по сути дела, болото поглощает близлежащие лесные угодья.

Торф образуется из не полностью разложившихся остатков болотных растений на сильно увлажненных территориях. Процесс разложения не может пройти полностью из-за недостатка кислорода, свободному доступу которого препятствует вода. Но самое главное, что многие болотные растения (преимущественно сфагновые мхи) подавляют течение микробиологических процессов в пласте торфа. Они имеют в своем составе антисептические вещества, в основном фенолы, которые действуют на окружающее пространство не только в период жизни растений, но и после их отмирания. Фенолы тормозят реакции окисления и хорошо известны как антисептики. Сфагновый мох, содержащий фенольное соединение сфагнол, с давних времен применяют в медицине и ветеринарии как перевязочный материал с бактерицидным действием. При растворении в болотных водах фенолы создают антибактериальную среду. Консервирующее действие болотной воды было известно еще в Средние века. В истории сохранились рассказы о мореплавателях, которые, отправляясь в дальние путешествия, брали с собой эту не загнивающую воду и добавляли ее в обычную воду для питья. Целебные торфяные грязи используют при лечении кожных заболеваний и в косметике.

Воды, питающие болота, различаются по степени минерализации ? это и бедные минеральными солями атмосферные осадки, и богатые ими грунтовые и речные воды. От условий минерального питания и рельефа зависит болотная растительность. Растения верховых болот ? сосна, пушица, сфагновые мхи, вересковые кустарники, морошка, шейхцерия ? не требуют богатого питания. Растения болот низинного типа ? береза, ольха, осока, зеленые мхи ? нуждаются в большом количестве минеральных солей. В зависимости от того, из каких растений образовался торф, он подразделяется на три типа: верховой, низинный и переходный. В состав органического вещества торфа входят различные группы химических соединений: водорастворимые и легкогидролизуемые компоненты, гуминовые и фульвовые кислоты, битумы, целлюлоза, лигнин. Химический состав минеральной части в основном представлен кремнием, кальцием, железом и алюминием. Кроме них в торфяной золе содержится целый ряд ценных микроэлементов: ванадий, никель, кобальт, медь, марганец, барий, титан.

Тип торфа и его химический состав во многом предопределяют использование его в хозяйственной деятельности. Например, верховой торф со степенью разложения менее 20% с успехом можно применять для приготовления кормовых дрожжей для животных, щавелевой кислоты, этилового спирта, сорбционных материалов и других продуктов, а вот использование его в качестве сырья для энергетики малоэффективно из-за низкой теплотворной способности. Из сильно разложившегося торфа низинного типа получается довольно калорийное коммунально-бытовое топливо. В целом на основе торфа можно получать более ста видов продукции, которая используется как в личном хозяйстве, так и на крупных промышленных предприятиях. Фактически термин ?торф? подразумевает качественно и количественно разные по своему химическому составу природные ресурсы, которые объединяет лишь место рождения ? болото!

Традиционно основными потребителями торфа были крупные электростанции и предприятия коммунально-бытового сектора. Кроме того, многие промышленные предприятия работали на горючем газе, получаемом при высокотемпературном термолизе торфа. Однако после открытия крупных месторождений природного газа в Западной Сибири большая энергетика перешла на этот более эффективный вид топлива. Некоторые уникальные технологии газификации остались разве что только в специальной литературе. А ведь их можно с успехом применять для переработки в горючий газ не только природных биогенных ресурсов, но и различных органических отходов, в том числе и бытовых. Справедливости ради нужно отметить, что это направление в настоящее время развивается довольно динамично. По мнению многих ученых, горючий газ, получаемый из торфа, не исчерпал себя и как энергетический ресурс.

Основная проблема, сдерживающая применение горючего газа из биогенного сырья, ? его сравнительно низкая теплотворная способность (приблизительно в 4?4,5 раза меньше чем у метана). Попробуем разобраться, с чем это связано. Дело в том, что газ, получаемый при термическом разложении торфа, состоит в основном из водорода H2 (теплота сгорания Q = 10,8 МДж/м 3), окиси углерода CO (Q=12,6 МДж/м 3), метана CH4 (Q = 39,7 МДж/м 3) и смеси других углеводородов. Но в условиях обычной газификации (нормальное давление, температура около 1000?С, паровоздушное дутье) доля метана и других углеводородов очень мала. Она составляет не более 0,5% от общего объема газов. Для увеличения их содержания необходимо значительно повышать температуру в зоне образования газа, что существенно увеличивает энергоемкость процесса и ведет к усложнению газогенераторных установок. Кроме того, при высокой температуре происходит плавление торфяной золы, которая превращается в стекловидную массу и выводит из строя технологическое оборудование.

В Тверском государственном техническом университете (ТГТУ) разработан новый метод низкотемпературной газификации торфа и органических отходов, который позволяет существенно увеличить долю углеводородов в горючем газе и, следовательно, повысить его теплотворную способность. В основе этого метода ? применение в процессе газификации различных каталитических систем. Причем благодаря использованию дешевых природных катализаторов себестоимость процесса увеличивается лишь незначительно. Выделяющиеся на начальных этапах термического разложения торфа жидкие и газообразные продукты не сжигаются, как в традиционно применяемых технологиях, а используются для получения более сложных химических соединений (этан, пропан, бутан, этилен и т. п.). Такие соединения имеют, как известно, значительно более высокую теплотворную способность. Их можно использовать в энергетике, а также направлять на дальнейшую переработку. Торф как источник тепловой и электрической энергии существенно меньше загрязняет атмосферу выбросами серы, фосфора, тяжелых металлов и других веществ по сравнению с углем и особенно мазутом.

Одна из самых серьезных проблем земель нечерноземной зоны Российской Федерации ? снижение плодородия и деградация почв из-за потерь органического вещества. И пока нет достойной альтернативы торфу для крупномасштабного улучшения агротехнических свойств почв. Даже в сравнительно благополучные 80-е и в начале 90-х годов XX века потребность сельскохозяйственных земель в органических удобрениях была удовлетворена только наполовину. Сейчас положение еще более усугубилось. На сельскохозяйственных предприятиях нечерноземной зоны Российской Федерации внесение органических удобрений составляет, по различным оценкам, примерно 3,6?4,0 тонны на гектар пашни в год (30?35% от научно обоснованной нормы). Во многих регионах нашей страны резко снизилось содержание гумуса, основного фактора плодородия почв.

По мнению специалистов, органические торфяные удобрения регулируют баланс гумуса и состояние почвенного биоценоза, улучшают физические и химические свойства почвы, повышают эффективность действия минеральных удобрений. Для тех, кто занимается сельским хозяйством, торф представляет особую ценность как источник органического вещества в почве. В торфе низинного типа содержится от 1,5 до 3% азота на сухое вещество, а в верховом несколько ниже ? 0,7?1,5%. Непосвященному человеку может показаться, что торф ? готовое азотное удобрение. Однако это не совсем так. Дело в том, что основная масса азота торфа находится в труднодоступной форме, в составе гуминовых веществ. Академик Д. Н. Прянишников называл торф ?азотной рудой?, подчеркивая тем самым малую доступность его для питания растений. Содержание доступных для растений минеральных форм азота (аммиачная и нитратная) в низинном торфе составляет всего 1?3%, а в верховом ? 4?14% от общего количества азота. Есть еще и частично доступные формы этого элемента питания, которые составляют от 35 до 45%. Таким образом, увеличение ?подвижности? азота ? одна из основных проблем при использовании торфа на удобрения.

Существует несколько способов решения этой задачи, как совсем простых, так и более сложных. Основные методы активизации азота торфа ? обработка аммиачной водой (или безводным аммиаком) и компостирование. Первый из них достаточно сложен и небезопасен для здоровья людей. Здесь требуются весьма токсичные химические соединения, специальная техника и средства индивидуальной защиты. При обработке аммиаком происходит так называемая аммонизация торфа. При этом уменьшается кислотность, разлагаются полисахариды. Гуминовые вещества под влиянием аммиака превращаются в растворимые соединения ? гуматы аммония, вследствие чего азот становится более доступен для растений. Вместе с тем аммиак активизирует гуминовый комплекс торфа, придавая ему свойства стимулятора роста растений. Такой метод активизации азота и повышения питательной ценности самого торфа применим при получении торфоаммиачных удобрений.

Второй способ ? компостирование ? несложен, легко осуществим и достаточно эффективен. Он довольно подробно описан в литературе и широко используется садоводами на приусадебных и дачных участках.

Сейчас разработаны и другие химические и биохимические методы активизации питательных элементов и органического вещества торфа, с помощью которых производят различные виды торфогуми новых удобрений.

В сельском хозяйстве торф нашел еще одно интересное применение: как материал для хранения овощей и фруктов. Он эластичен и упруг, обладает бактерицидными свойствами, способностью хорошо поглощать воду и газы, низкой теплопроводностью и повышенной кислотностью. Лучше всего для хранения сельскохозяйственной продукции использовать торф со степенью разложения менее 15%, содержанием сфагновых мхов более 10%, влажностью 35?45%, зольностью менее 15%, кислотностью рН в пределах от 2,5 до 5,4. Конечно, подойдет и более разложившийся торф, но эффект от его применения будет несколько ниже. Кроме того, важно, чтобы применяемый торф предварительно не подвергался саморазогреванию (этот сложный биохимический процесс происходит при хранении торфа в больших штабелях и нередко становится причиной самовозгорания).

При длительном хранении слои овощей и фруктов перекладывают прослойкой из измельченной торфяной крошки толщиной 3?5 см. Мягкая торфяная подстилка не допускает механического раздавливания плодов, подавляет размножение гнилостных бактерий. Даже при загнивании

Другие разделы

© 2003-2024 www.derevodom.com